
Vertical multi-stage centrifugal pumps

Installation and operating instructions series: MVV and MVLHS

Table of Contents

1	Manual Introduction									
	1.1	Preface	4							
	1.2	Icons and symbols	4							
2	lde	Identification, service and technical support								
	2.1	Obtaining data and information MVV	5							
	2.2	Obtaining data and information MVLHS								
	2.3	Seal codes								
	2.4	Current								
	2.5	Supplementary documentation								
3	Wa	rranty								
	3.1	Terms of warranty	8							
4	Saf	ety and environment								
•	4.1	General	С							
	4.2	Users								
	4.3	Safety provisions								
	4.4	• •								
		Safety precautions Environmental aspects								
	4.5	Environmental aspects	10							
5	Pump Introduction									
	5.1	Model key								
	5.2	Description of the product								
	5.3	Ecodesign								
	5.4	Intended use								
	5.5	Operation								
	5.6	Measuring, draining and venting								
	5.7	Modular selection	13							
	5.8	Working range	13							
6	Tra	nsport								
	6.1	Transport	15							
	6.2	Storage	15							
7	Ins	tallation instructions								
	7.1	Setting up the pump	16							
	7.2	Mounting a motor on the pump								
	7.3	Electrical installation								
	7.4	Commissioning								
8	Op	eration								
_	8.1	Operation	23							
9	Ma	intenance								
J			0.4							
	9.1	Introduction								
	9.2	Lubrication								
	9.3	Maintaining the pump for an extended period of non-operation								
	94	Torques of counling shell - nos 914 01	24							

 Failures 10.1 Failure table	25
 Annexes 11.1 EC declaration of conformity	27

1 Manual Introduction

1.1 Preface

This manual contains important information for reliable, proper and efficient operation. Compliance with the operating instructions is of vital importance to ensure reliability and a long service life of the product and to avoid any risks.

The first chapters contain information about this manual and safety in general. The following chapters provide information about normal use, installation, maintenance and repairs of the product. The annex contains the declaration(s) of conformity.

- Make yourself familiar with the content.
- Accurately follow the directions and instructions.
- Never change the sequence of the operations to be carried out.
- Keep this manual or a copy of it together with the logbook in a fixed place near the product which can be accessed by all personnel.

1.2 Icons and symbols

In this manual and in all accompanying documentation the following icons and symbols are used.

WARNING

Danger of electric Voltage. Safety sign according to IEC 417 - 5036

WARNING

Operations or procedures, if carried out without caution, may cause personal injury or damage to the product.

General hazard sign according to ISO 7000-0434

ATTENTION

Is used to introduce safety instructions whose non-observance may lead to damage to the product and its functions.

ENVIRONMENTAL INSTRUCTION Remarks with respect to the environment.

READ THE (SUPPLEMENTARY)
DOCUMENTATION
Read the user and operating instructions.

2 Identification, service and technical support

2.1 Obtaining data and information MVV

The name plate indicates the type series / size, main operating data and identification number. Please quote this information in all queries, repeat orders and particularly when ordering spare parts. If you need any additional information or instructions exceeding the scope of this manual or in case of damage, please contact Kolmeks nearest customer service centre.

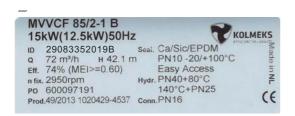


Figure 1: Pump with motor

Figure 2: Pump without factory mounted motor

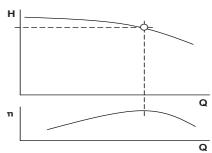


Figure 3: Duty point

3481

Table 1: Description nameplate

Indication		Meaning				
MVVCF 85/2-1 B		Model key (design version B)				
15 kW (12.5 kW)		Installed motor power (required power @ max. curve) ^{1 2}				
Frame 160		Motor frame size				
50 Hz		Nominal frequency				
ID	29083352019B	Pump ID				
Q ³	72 m ³ /h	Optimum capacity running at fixed speed (see fig. 3 Duty point)				
Н	42.1 m	Optimum head running at fixed speed (see fig. 3 Duty point)				
Eff.	74% (MEI>=0.60)	Minimum Efficiency Index				
n fix.	2950 rpm	Rotation speed indication at which Q/H are given				
PO	600097191	Purchase order number				
Prod.	WW / YYYY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Production week/year and production serial number > as built file				
Seal.	Ca/SiC	Mechanical Seal Surface Code, see fig.: 2.3 Seal codes				
	EPDM	Pump Elastomers				
	PN10 -20/+100°C	Maximum pressure at mentioned temperature ⁴				
	Easy access	Seal construction type				
Hydr.	PN40+80°C/140°C+PN25	Maximum temperature at mentioned pressure				
Conn.	PN16	Pressure Class connection				


- 1. For pumps without a factory mounted motor: Frame size.
- 2. When the Installed motor power is less than the required power, the pump is limited in it's operating range. Consult your sales representative for details.
- 3. Optimum capacity of the hydraulics, restricted operating range (note 2.) not taken into account.
- 4. At lower pressure, a higher temperature is allowed (please consult your supplier).

2.2 Obtaining data and information MVLHS

The name plate indicates the type series / size, main operating data and identification number. Please quote this information in all queries, repeat orders and particularly when ordering spare parts. If you need any additional information or instructions exceeding the scope of this manual or in case of damage please contact Kolmeks's nearest customer service centre.

Pump with motor

Pump without motor

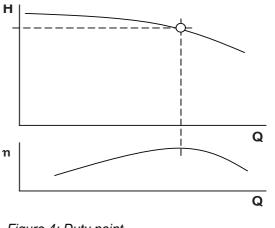


Figure 4: Duty point

3060

Table 2: Description nameplate

Indication		Meaning
MVLHS6-200		Model key (number of stages x10)
15.0 kW ¹		Installed motor power (current)
(25.8A)		Required motor current
(13.54kW)		Required motor power
50 Hz		Nominal frequency
ID	25065200	Article number
Q	6.5 m ³ /h	Optimum capacity running at fixed speed (see fig. 4 Duty point)
Н	321.4 m	Optimum head running at fixed speed (see fig. 4 Duty point)
n fix	2850 rpm	Rotation speed indication at which Q/H are given
PO	600129185	Purchase order number
Prod	WW / YYYY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Production week/year and production serial number (As built file)
Seal	TUC/CA	Mechanical Seal Surface Code, See 2.3 Seal codes
	FPM	Pump Elastomers
Hydr.	PN40 +120°C	Maximum temperature at mentioned pressure ²
Conn.	DIN/NW32	Connection size
MEI	>=0.50	Minimum Efficiency Index

- For pumps delivered with special motors no values are given (please use values as indicated on the motor type plate)
- General temp and pressure indication. Allowable pressures and temperatures also depend on type of sealing.

The following address data are available for service and technical support:

Kolmeks	Tel. +358 20 7521 31
service department	Fax +358 20 7521 200
Taimistotie 2	Internet: www.kolmeks.fi
FIN-14200 TURENKI	E-mail: office.kolmeks@kolmeks.fi
FINLAND	

2.3 Seal codes

Table 3: Material code shaft seal

Code acc. to EN 12756	Description	Material		Note
В	Spring loaded ring	Carbon graphite	Ca	Resin impregnated
Q1		Silicon carbide	SiC	Sintered pressureless
U3		Tungsten carbide	TuC	CrNiMo-binder
A	Seat ring	Carbon graphite	Ca	Antimony impregnated
В		Carbon graphite	Ca	Resin impregnated
Q1		Silicon carbide	SiC	Sintered pressureless
U3		Tungsten carbide	TuC	CrNiMo-binder
E	Elastomers	EPDM	EPDM	Ethylene propylene rubber
V		FPM	FPM	Fluor carbon rubber
X4		HNBR	HNBR	Hydrogenated nitrile rubber
G	Spring	CrNiMo steel		
G	Other metal parts	CrNiMo steel		

Information about seal combinations, types, pressure and temperature see: table 9 Sealings

2.4 Current

2.4.1 Nominal current MVV

The nominal allowable current of the motor is stated on the motor plate. This shows the nominal working range of the motor and can be used to protect the motor.

Measuring the actual current of the pump during operation can be used to pre-set the motor protection switch to protect the pump/motor combination. This current value can also be used to determine the proper electrical equipment such as variable frequency drive, main switch, wiring diameter etc.

WARNING

Not only the motor, but also the pump has to be protected in its application.

2.4.2 Maximum current MVLHS 6

The maximum allowable current of the motor is mentioned as I.max. on the motor plate. This maximum allowable current shows the maximum working range of the motor and can be used to protect the motor.

WARNING

Be careful in using it this way, because, not only the motor, but also the pump has to be protected in its application.

On the pump plate (sleeve sticker) this "required motor current" can be mentioned and it can be used to pre-set the motor protection switch to protect the pump/motor combination.

This current value can also be used to determine the proper electrical equipment such as variable frequency drive, main switch, wiring diameter etc.

2.5 Supplementary documentation

Apart from this manual, the documentation given below is also available:

Table 4: Supplementary documentation

Document	Code
General terms of delivery	119 / 1998
See also www.kolmeks.fi	

3 Warranty

3.1 Terms of warranty

The warranty period is settled by the terms of your contract or at least by the general terms and conditions of sales.

ATTENTION

Modifications or alterations of the product supplied are only permitted after consultation with the manufacturer. Original spare parts and accessories authorized by the manufacturer ensure safety. The use of other parts can invalidate any liability of the manufacturer for consequential damage.

ATTENTION

The warranty relating to the operating reliability and safety of the product supplied is only valid if the product is used in accordance with its designated use as described in the following sections of this manual. The limits stated in the data sheet must not be exceeded under any circumstances.

The warranty becomes invalid if one or more of the points below occur.

- The buyer makes modifications himself.
- The buyer carries out repairs himself or has these carried out by a third party.
- The product has been handled or maintained improperly.
- The product has non original Kolmeks spare parts fitted.

Kolmeks repairs defects under warranty when:

- They are caused by flaws in the design, the material or the production.
- They are reported within the warranty period. Other terms of warranty have been included in the general terms of delivery, which are available upon request.

4 Safety and environment

4.1 General

This Kolmeks product has been developed using state-of-the-art technology; it is manufactured with utmost care and subject to continuous quality control. Kolmeks does not accept any liability for damage and injury caused by not observing the directions and instructions in this manual, or in cases of carelessness during the installation procedure, use and maintenance of the product.

Non-compliance with safety instructions can jeopardize the safety of personnel, the environment and the product itself. Non-compliance with these safety instructions will also lead to forfeiture of any and all rights to claims for damages.

For example, in particular non-compliance can result in:

- failure of important pump/system functions,
- failure of prescribed maintenance and servicing practices,
- injury to persons by electrical, mechanical and chemical effects,
- hazard of the environment due to leakage of hazardous substances,
- explosions.

Depending on specific activities, extra safety measures may be required. Contact Kolmeks if a potential danger arises during use.

ATTENTION

The owner of the product is responsible for compliance with the local safety regulations and internal company guidelines.

ATTENTION

Not only must the general safety instructions laid down in this chapter on "Safety" be complied with, but also the safety instructions outlined under specific headings.

4.2 Users

All personnel involved in the operation, maintenance, inspection and installation of the product must be fully qualified to carry out the work involved and be aware

of all applicable responsibilities, authorisations and super visions. If the personnel in question is not already in possession of the required know-how, appropriate training and instruction must be provided. If required, the operator may commission the manufacturer / supplier to take care of such training. In addition, the operator is responsible for ensuring that the contents of the operating instructions are fully understood by the responsible personnel.

4.3 Safety provisions

The product has been designed with the greatest possible care. Original parts and accessories meet the safety regulations. Modifications in the construction or the use of non-original parts may lead to a safety risk.

ATTENTION

Make sure that the product operates within its working range. Only then the product performance is guaranteed.

4.3.1 Labels on the product

The icons, warnings and instructions applied to the product are part of the safety provisions. The labels may not be removed or covered. Labels must remain legible during the entire life of the product. Replace damaged labels immediately.

4.4 Safety precautions

4.4.1 During normal use

- Contact the local electricity company for questions about the power supply.
- Protect the parts that can become hot, making direct contact impossible.
- When applicable, always place undeformed coupling guards to protect the coupling, before putting the pump into use. Make sure that the coupling guards are never in contact with the rotating coupling.
- Always close the terminal box of the motor.
- Always close the control panel where applicable

4.4.2 During installation, maintenance and repair

Only authorised personnel may install, maintain and inspect the product and repair electrical components. Observe the local safety regulations.

WARNING

Always disconnect the energy supply to the product first, before installation, maintenance and repairs. Secure this disconnection.

WARNING

Surfaces of a pump can be hot after continuous operation.

WARNING

Make sure that no one can be near rotating components when starting a pump.

WARNING

Handle a pump with dangerous liquids with the utmost care. Avoid danger for persons or the environment when repairing leakages, draining liquids and venting. It is strongly recommended to place a leakage tray under the pump.

WARNING

Immediately following completion of the work, all safety-relevant and protective devices must be re-installed and / or re-activated.

WARNING

Please observe all instructions set out in the chapter "Commissioning/Start-up" before returning the product to service.

4.5 Environmental aspects

4.5.1 General

The products of Kolmeks are designed to function in an environmentally friendly way during their entire lifetime. Therefore, when applicable, always use biodegradable lubricants for maintenance.

ENVIRONMENTAL INSTRUCTION

Always act according to the laws, bylaws regulations and instructions with respect to health, safety and the environment.

4.5.2 Dismantling

The owner is responsible for the dismantling and environmentally friendly disposal of the product.

ENVIRONMENTAL INSTRUCTION

Ask at the local government about the re-use or the environmentally friendly processing of discarded materials.

5 Pump Introduction

5.1 Model key

Table 5: Model key Example

	MV	VS	F	85	/3	-1	В	
Label	MV							Product Label
Material/Construction		VC						Cast Iron pump foot and top bracket hydr. 1.4301 / AISI 304
		V						All wetted parts Stainless Steel 1.4301 / AISI 304
		VM						All wetted parts Stainless Steel 1.4301 / AISI 304 with closed coupled motor
		VS						All wetted parts Stainless Steel 1.4401 / AISI 316
Connections			Е					Male thread (with non-return valve insert)
								Oval flange with female thread
			F					Round flange
			٧					Victaulic connections
			Т					Tri-clamp connections
				85				Size (Capacity in m ³ /h at Q _{opt})
					/3			Number of stages
					/3	-1		Number of stages of which one stage with reduced head
							В	Design version B
	MV	LHS		6	-200			
Label	MV							
		LHS						Vertical pump in superior grade AISI 316 (1.4401) 40 Bar
Connections								Round flanges DIN or ASME
				6				Size (Capacity in m ³ /h at Q _{opt})
					-200			Number of stages (x10)
								Design version

5.2 Description of the product

The vertical, single or multi stage centrifugal pump series are designed for pumping clean, or slightly aggressive, watery mediums.

Suction and discharge connections of the pump are in-line, making the pump easy to install.

The hydraulic assembly is driven by an electric motor. All hydraulic parts of the pump are made of stainless steel.

5.3 Ecodesign

Product information according to Regulation 547/ 2012 and Directive 2009/125/EC "Ecodesign Directieve" (water pumps with maximum shaft power rating of 150 kW, applies only to water pumps marked with the Minimum Efficiency Index MEI, see pump nameplate):

- Minimum Efficiency Index: See nameplate, legend for nameplate. See table 1 Description nameplate.
- The reference value MEI of a water pump with the best efficiency is = 0.70.
- Year built: See nameplate, legend for nameplate. See table1 Description nameplate.
- Manufacturer's name or trademark, official registration number and place of production: See manual or order documentation.
- Information about type and size of the item: See table 1 Description nameplate.
- Performance curves of the pump, including efficiency characteristics: See documented curve.

- The efficiency of a pump with a corrected impeller is usually lower than that of a pump impeller with a full diameter. A pump with a corrected impeller is adapted to a certain duty point, thereby reducing the energy consumption. Minimum Efficiency Index (MEI) refers to the full impeller diameter.
- The operation of this water pump at different operating points can be more efficient and more economical when it is controlled, for example using a variable speed controller which adjusts the pump operation to the system.
- Information for disassembly, recycling or disposal after the final shutdown: See sub chapter 4.5.2 Dismantling.
- Information about the efficiency reference value or MEI = 0.7 (0.4) benchmark index for the pump on the basis of the pattern in the picture, please visit: http://www.europump.org/efficiencycharts.

5.4 Intended use

The pumps MVV are suitable to transport and increase the pressure of cold and hot water without wear to parts within the indicated working range. The transport of liquids with a different viscosity or density than water is possible as well. For this a motor with an adjusted power could be required. Ask Kolmeks or your distributor for advice.

Any other or further use of the pump is not in conformity with its intended use. Kolmeks does not accept any liability for any damage or injury that results from this. The pump is produced in accordance with the current standards and guidelines. Use the pump only in a perfect technical state, in conformance with the intended use described below.

The *Intended use* as laid down in ISO 12100:2010 is the use for which the technical product is intended according to the specifications of the manufacturer. The use of the product has been described in the sales brochure and in the user manual. Always observe the instructions given in the user manual. When in doubt the product must be used as becomes evident from its construction, version and function.

5.5 Operation

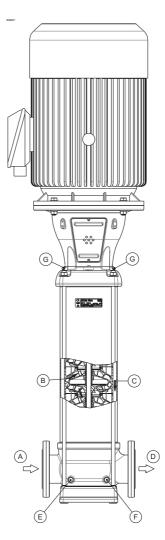


Figure 5: MVVF 85

The rotating impeller causes the pressure at the inlet of the impeller to drop. This decrease in pressure creates the flow through the suction connection (A). Every stage (B) consists of an impeller and a diffusor. The capacity of the pump is determined by the size of the passageway of the stage. The pressure of the stage is determined by the diameter of the impeller. Because of the modular type of construction it is possible to choose the number of impellers most suited to the required duty point. After leaving the last impeller the medium flows between the pump stages and the outer sleeve (C) and exits the pump at the discharge connection (D)

20080190-A/27022008

5.6 Measuring, draining and venting

The pump is provided with plugs for measuring, draining and venting.

Connection (E) is meant to drain the inlet part of the pump, or to measure the inlet / suction pressure using a G $\frac{1}{4}$ connection.

Connection (F) is meant to drain the outlet part of the pump, or to measure the discharge pressure using a G ¼ connection.

Connections (G) are meant to vent the pump system when the pump is not in operation, or to measure the discharge pressure of the pump using a G 3/8 connection.

5.7 Modular selection

For a optimal match with the application, the pump is assembled out of modules which are selected depending on their specifications.

The basic modules are:

- Basic pump model. Defines the capacity and head, the basic material and allowable pressures and temperatures.
- Connections. Defines the connection size, pressure class and allowable temperatures.
- Sealings. Defines material of the elastomers, shaft seal type and allowable pressures and temperatures.
- Electric motor. Defines all requirements of the motor such as size, power, supply voltage, frequency and possible motor accessories.

5.8 Working range

The working range depends on the basic hydraulic design, the type of connection and sealings. The module in the pump with the strictest specification determines the allowable pressure and temperature of the medium in the pump. The general working specifications can be summarised as follows:

Table 6: General working range specification

Pump type	MVV	note
Ambient temperature [°C]	-20 up to 40	1,2
Minimum inlet pressure	NPSH _{req.} + 1 m	
Viscosity [cSt]	1-100	3
Density [kg/m ³]	1000-2500	2
Cooling	forced motor cooling	

Pump type	MVV	note
Minimum frequency [Hz]	30	
Maximum frequency [Hz]	60	4
Maximum number of starts	see motor data sheet	5
Noise emission	see motor data sheet	6
Allowable size of solids pumped	5 μm to 1 mm	

- 1. Avoid freezing the pump.
- If the ambient temperature exceeds the above value or the motor is located more than 1000 m above sea level, the motor cooling is less effective and could require an adapted motor power. Please contact your supplier for more detailed advice.
- Deviation in viscosity and/or density could require an adapted motor power. Please contact your supplier for more detailed advice.
- Pumps that are intended for 50 Hz operation, may not be connected to 60 Hz power supply.
- Frequent start/stops, in particular in combination with higher pressure differences (Δp) may result in a shortened product lifetime. Consult your supplier for such applications.
- 6. Only the noise emission of the motor is documented.

ATTENTION

The temperature difference between the medium and the pump should never exceed 60 °C. The pump must be filled / heated-up slowly in any case where the difference between pump and medium is more then 30 °C to avoid any chance of a thermal shock.

For minimum/maximum flow at medium temperature of 20 °C see table 7 Minimum/maximum capacity (Qmin/max); for higher temperatures see figure 6 Minimum capacity vs. temperature (in % of Q optimum)

Table 7: Minimum/maximum capacity (Q_{min/max})

size	Q _{min}	_{max} [m	³ /h]					
	50 Hz	Z			60 Hz			
	2 pol	е	4 pole		2 pole		4 pole	
	Min. Max.		Min. Max		Min.	Max.	Min.	Max.
2	0.2	3.3			0.2	4.0		
4	0.4	6.5			0.5	7.8		
6	0.6	9.0			8.0	10.8		
10	1.1	13.2	0.5	6.6	1.3	15.8	0.6	7.9
15	1.6	22.5	8.0	11.3	2.0	27.0	1.0	13.5
25	2.8	35.0	1.4	17.5	3.1	42.0	1.6	21.0
40	4	54	1.9	27	4.9	65	2.3	32.5
60	5.3	57	2.6	38	6.4	92	3.2	46
85	8.5	110	4.3	53.9	10.2	132	5.1	65.1
125	30	160	15	80	36	192	18	96
LHS6	8.0	8.6			0.7	8.6		

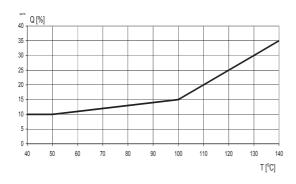


Figure 6: Minimum capacity vs. temperature (in % of Q optimum)

5.8.1 Detailed working range MVV

For the actual working range of the pump see the name plate.

5.8.2 Detailed working range MVLHS 6

Table 8: Basic hydraulic design

Pump type	Pressure [bar]	Temperature [°C]
MVLHS 6	40	120

Table 9: Sealings

Shaft seal materi- als ¹	type	pressure [bar]	tempera- ture [°C]
SiC/Ca/EPDM WRC	RMG-G606	25	90
Ca/SiC/EPDM	MG-G60	10	120
Ca/SiC/FPM	MG-G60	10	80
SiC/Ca/EPDM	RMG-G606	25	120
SiC/Ca/FPM	RMG-G606	25	80
TuC/TuC/HNBR	RMG-G606	25	120
TuC/TuC/FPM	RMG-G606	25	80
SiC/SiC/EPDM	MG-G606	10	90
SiC/SiC/FPM	MG-G606	10	80
TuC/Ca/EPDM	RMG-G606	25	120
TuC/Ca/FPM ²	M37GN2	40	80
TuC/Ca/EPDM ²	M37GN2	40	120

Apart from the shaft seal other sealings might be assembled with different allowable conditions. If in doubt consult your sales supplier.

2. LHS6 only

6 Transport

6.1 Transport

- 1. Transport the pump in the position as indicated on the pallet or packaging.
- 2. Make sure the pump is stable.
- 3. If present, observe the instructions on the packaging.

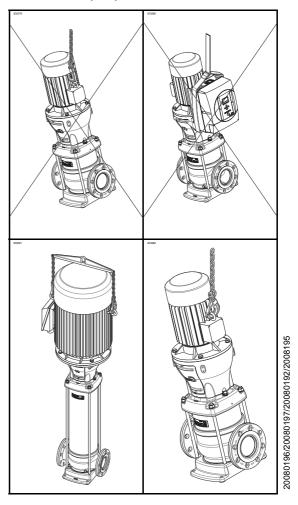
WARNING

Lift the pump, if necessary using a hoist and suitable slings. Attach the slings to the transport lugs on the packaging, where present.

WARNING

The pump must be lifted according to the current hoist guidelines. Only qualified personnel is allowed to lift the pump.

WARNING


Do not lift the pump by using the frequency converter (if placed), electrical parts or the motor cover. Be sure that the pump is always in balance.

WARNING

Pumps could tilt while lifting. Do not remove the lifting devices from the pump before the pump is placed and mounted correctly.

Table 10: Transport positions

6.2 Storage

Fill the pump with glycol in order to protect it against the risk of frost.

Table 11: Storage

Storage	
t _{ambient} [°C]	-10/+40
Max. rel. humidity	80% at 20 °C not condensing

6.2.1 Inspection during storage

1. Turn the shaft every three months and just before putting into operation.

Installation instructions 7

7.1 Setting up the pump

Avoid stress in the pump casing caused by misalignment in the piping system. Please see table below.

Table 12: Allowable forces MVV(S)F and MVLHS

Туре	DN	Force [N]			
	[mm]	Fx	Fy	Fz	Σ F
V(S)F 2 B	25	3300	-2400	1700	4420
V(S)F 4 B	25	3300	-2400	1700	4420
V(S)F 6 B	32	3300	-2400	1700	4420
V(S)F 10 B	40	4000	-3100	3100	5930
V(S)F 15 B	50	4000	-3100	3100	5930
V(S)F 25 B	65	3200	-3500	3500	5890
V(S)F 40 B PN16/25	80	4000	-1800	2000	4820
V(S)F 40 B PN40	80	3700	-3300	3700	6190
V(S)F 60 B PN16/25	100	4000	-1800	2000	4820
V(S)F 60 B PN40	100	3700	-3300	3700	6190
V(S)F 85 B	100	3500	-2500	1000	4420
V(S)F 125 B 16 Bar	125	4400	-1700	1700	5010
V(S)F 125 B 25/40 Bar	125	7000	-2620	2620	7920
MVLHS 6	32	8000	-2000	3200	8800

20090283-G

Table 13: Allowable torque MVV(S)F and MVLHS

Туре	DN	Moment [Nm]			1]
	[mm]	Mx	Му	Mz	ΣΜ
V(S)F 2 B	25	280	95	-210	360
V(S)F 4 B	25	280	95	-210	360
V(S)F 6 B	32	280	95	-210	360
V(S)F 10 B	40	440	180	-200	520
V(S)F 15 B	50	440	180	-200	520
V(S)F 25 B	65	1000	230	-400	1100
V(S)F 40 B PN16/25	80	400	200	-300	540
V(S)F 40 B PN40	80	975	240	-450	1100
V(S)F 60 B PN16/25	100	400	200	-300	540
V(S)F 60 B PN40	100	975	240	-450	1100
V(S)F 85 B	100	750	500	-625	1100
V(S)F 125 B 16 Bar	125	600	425	-425	850
V(S)F 125 B 25/40 Bar	125	1000	655	-655	1360
MVLHS 6	32	460	460	-500	800

20090283-G

ATTENTION

The application of pump series MVV(S)F 40 and MVV(S)F 60 is only allowed in systems where there is no external force or torque on the connections of the pump casing.

Table 14: Allowable forces MVVCF

Туре	DN Force [N]				
	[mm]	Fx	Fy	Fz	Σ F
VCF 2 B	25	9400	-3200	3200	10430
VCF 4 B	25	9400	-3200	3200	10430
VCF 6 B	32	9400	-3200	3200	10430
VCF 10 B	40	8000	-2000	3200	8850
VCF 15 B	50	8000	-2000	3200	8850
VCF 25 B	65	5000	-2000	2500	5940
VCF 40 B	80	6000	-3000	3000	7350
VCF 60 B	100	6000	-3000	3000	7350
VCF 85 B	100	6200	-4100	4100	8490
VCF 125 B 16 Bar	125	4400	-1700	1700	5010
VCF 125 B 25/40 Bar	125	7000	-2620	2620	7920

20090283-G

Table 15: Allowable torque MVVCF

Туре	DN				
	[mm]	Mx	Му	Mz	ΣΜ
VCF 2 B	25	600	300	-360	760
VCF 4 B	25	600	300	-360	760
VCF 6 B	32	600	300	-360	760
VCF 10 B	40	460	460	-500	820
VCF 15 B	50	460	460	-500	820
VCF 25 B	65	1000	300	-300	1090
VCF 40 B	80	1800	1000	-1000	2290
VCF 60 B	100	1800	1000	-1000	2290
VCF 85 B	100	2000	1200	-1200	2620
VCF 125 B 16 Bar	125	600	425	-425	850
VCF 125 B 25/40 Bar	125	1000	650	-650	1360

20090283-G

ATTENTION

For the values mentioned in the tables above, it is assumed that they occur simultaneously.

20090283-G

Figure 7: Allowable forces

ATTENTION

Pumps which do not stand steady or stable on their own, should be mounted on a rigid and stable base.

ATTENTION

Locate the pump at the place with the lowest risk for noise nuisance.

- 1. Place and install the pump on a level, stable surface in a dry and frost-free room.
- Make sure that sufficient air can reach the cooling fan of the motor. For this purpose the free space above the cooling fan should be at least 1/4 of the diameter of the fan cover air intake.
- Install the pump with counter flanges. For pumps with non-standardised connections, counter flanges are delivered separately.
- 4. It is advised to install a shut off valve on the supply and on the delivery connection of the pump.
- 5. To avoid medium flowing back through the pump, when idle, make sure a non-return valve is installed.
- 6. Make sure that the inlet of the pump is never clogged.

7.1.1 Indicators

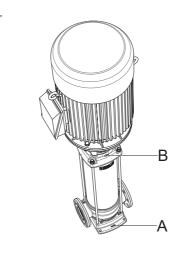


Figure 8: Pump indicators

The arrow (A) on the pump foot indicates the flow direction of the liquid. The arrow (B) on the top bracket indicates the rotating direction of the motor.

7.1.2 Install bypass

Install a bypass if the pump operates against a closed valve. The required capacity of the bypass is at least 10% of the optimum volume flow. At high operating temperatures a higher volume flow is required. Refer to the table "Minimum volume flows" in the paragraph "Working range" and fig 6 Minimum capacity vs. temperature (in % of Q optimum).

7.2 Mounting a motor on the pump

ATTENTION

It is to be advised to use a special designed Kolmeks motor. Before installing an other brand/standard IEC-norm motor, Kolmeks has to be consulted to judge the applicability.

The following motor specifications are required:

- Increased power output (when applicable)
- Reinforced bearing at driven end (to withstand the axial force)
- Fixed bearing at driven end (to minimize the axial play)
- Smooth shaft, no key way (to improve the coupling grip and to improve the motor balance)

The advised bearings per motor type are:

Table 16: Minimum required motor Driven-end bearing

Bearing	Bearing type				
Power output	1 phase 50 Hz	3 phase 50/60 Hz			
[kW]		2 pole	4 pole		
0.25			6202-2Z-C3		
0.37	6202-2Z-C3	6203-2Z-C3	6202-2Z-C3		
0.55	6202-2Z-C3	6203-2Z-C3	6202-2Z-C3		
0.75	6204-2Z-C3	6204-2Z-C3	6202-2Z-C3		
1.1	6204-2Z-C3	6204-2Z-C3	6205-2Z-C3		
1.5	6305-2Z-C3	6305-2Z-C3	6205-2Z-C3		
2.2	6305-2Z-C3	6305-2Z-C3	6206-2Z-C3		
3		6306-2Z-C3	6206-2Z-C3		
4		6306-2Z-C3	6208-2Z-C3		
5.5		6308-2Z-C3	6208-2Z-C3		
7.5		6308-2Z-C3	6208-2Z-C3		
11		7309			
15		7309			
18.5		7309			
22		7311			
30		7312			
37		7312			
45		7313			
20101096	S-D				

7.2.1 Install the motor on pumps, supplied without motor, with a standard mechanical seal.

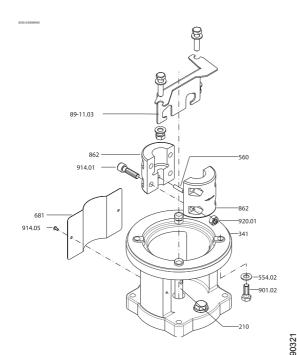


Figure 9: Without motor

 Remove the coupling guards (681) and the coupling shells (862).

- 2. Remove the seal protection bracket (89-11.03) and its mounting material. For pumps with a taper piece (722) (with motor of 5.5 kW or higher), the two bolts (914.02 or 901.02) has to be placed back to connect the taper piece to the motor stool. Thoroughly clean the motor stool (341), the shaft (210), the coupling shells (862) and the motor shaft.
- Loosely fasten the coupling shells (862) with the coupling pin (560) on the shaft (210). Use the hexagon socket head cap screw (914.01) and the nut (920.01) for this. (When the pump is equipped with a steel coupling, never use the same coupling twice but order a new one).
- 4. Place the motor on the motor stool (341).
- 5. Tighten the lower bolts of the coupling shells (862) in such way, that the coupling slightly clamps around the motor shaft.
- 6. For pump series: **MVV**Use a sufficient tyre iron to lift the coupling (and hydraulic assembly) 1.5 mm higher then the lowest position. For easy and accurate adjustment of the coupling contact your supplier for the appropriate Toolkit For Adjustment Hydraulics.

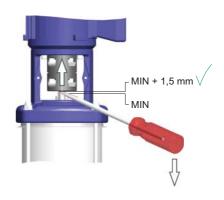


Figure 10: fixed seal

WARNING

Correct seal adjustment max. 1.5 mm higher then the lowest position.

ATTENTION

For motors of 11 kW or higher, block the rotor when adjustments are made to the coupling. This ensures that the rotor is not lifted out of its bearings.

For pump series: MVLHS 6
 Use a sufficient tyre iron to lift the coupling (and hydraulic assembly) to the maximum upwards position and lower it 1 mm from this position.

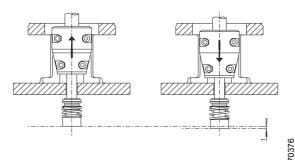


Figure 11: Positioning the seal

WARNING

Correct seal tension max. -1 mm lower than the maximum upwards position!

ATTENTION

For motors of 11 kW or higher, block the rotor when adjustments are made to the coupling. This ensures that the rotor is not lifted out of its bearings.

 Fully tighten the couplings at the given torque (see "Torques" in the annexes). Make sure that the gaps between the couplings are equally divided on both sides (see drawing).

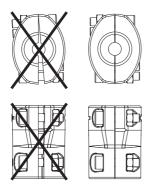


Figure 12: Position of the coupling

- Attach the coupling guards (681) with the socket head cap screws (914.05) to the motor stool (341).
- 10. Connect the power supply. see § 7.3 Electrical installation.

7.2.2 Installing the motor on pumps, supplied without motor, with a cartridge seal

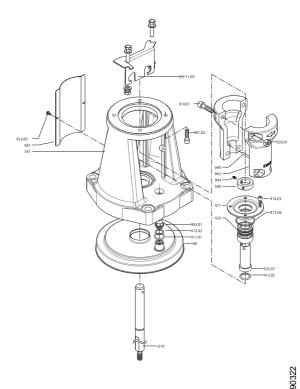


Figure 13: With motor

- 1. Remove the coupling guards (681) and the coupling shells (862).
- 2. Remove the seal protection bracket (89-11.03) and its mounting material. For pumps with a taper piece (722) (with motor of 5.5 kW or higher), the two bolts (914.02 or 901.02) has to be placed back to connect the taper piece to the motor stool. Thoroughly clean the motor stool (341), the shaft (210), the coupling shells (862) and the motor shaft.
- Loosely fasten the coupling shells (862) with the coupling pin (560) on the shaft (210). Use the hexagon socket head cap screw (914.01) and the nut (920.01) for this. (When the pump is equipped with a steel coupling, never use the same coupling twice but order a new one).
- 4. Place the motor on the motor stool (341).
- 5. Loosen the three cartridge grub screws (904) one turn.
- 6. Push the hydraulic pump assembly in the lowest position.
- 7. Tighten the three cartridge grub screws (904) firmly to the shaft.
- 8. Tighten the lower bolts of the coupling shells (862) so that the coupling slightly clamps around the motor shaft.

Use a sufficient tyre iron to lift the coupling (and hydraulic assembly) 1.5 mm higher then the lowest position. For easy and accurate adjustment of the coupling contact your supplier for the appropriate Toolkit For Adjustment Hydraulics.



Figure 14: Cartridge seal

WARNING

Correct seal adjustment max. 1.5 mm higher then the lowest position.

ATTENTION

For motors of 11 kW or higher, block the rotor when adjustments are made to the coupling. This ensures that the rotor is not lifted out of its bearings.

10. For pump series: MVLHS 6

Use a sufficient tyre iron to lift the coupling (and hydraulic assembly) to the maximum upwards position and lower it 1 mm from this position.

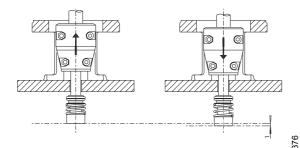


Figure 15: Positioning the seal

WARNING

Correct seal tension max. -1 mm lower than the maximum upwards position!

20091316-B

ATTENTION

For motors of 11 kW or higher, block the rotor when adjustments are made to the coupling. This ensures that the rotor is not lifted out of its bearings.

11. Fully tighten the couplings at the given torque (see "Torques" in the annexes). Make sure that the gaps between the couplings are equally divided on both sides (see drawing).

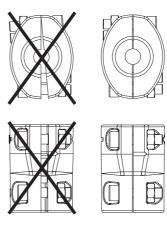


Figure 16: Position of the coupling

- 12. Install the coupling guards (681) with the socket head cap screws (914.05) to the motor stool (341).
- 13. Connect the power supply. see § 7.3 Electrical installation.

7.3 Electrical installation

WARNING

In accordance with the local regulations only authorised personnel is allowed to make electrical connections to the motor.

ATTENTION

Connect the motor according to figure 17 Motor connections and always check the rotation direction.

Electrical connections:

- Make sure that the motor specifications correspond with the power supply to which the pump motor is connected. Consult "Electrical diagrams" for the correct connection diagram.
- Connect the motor using a motor safety switch.

Figure 17: Motor connections

PTC connection STM 140 EK:

- Standard motors 3 kW and up are equipped with a PTC thermistor. Consult Table 17 Technical specifications PTC STM 140 EK.
- Connect the PTC to a thermistor relay.

Table 17: Technical specifications PTC STM 140 EK

	Value
t _n [°C]	140
R _{20 °C} [Ω]	~ 20
R _{tn-20 °C} [Ω]	~ 250
R _{tn-5 °C} [Ω]	< 550
R _{tn+5 °C} [Ω]	> 1330
R _{tn+15 °C} [Ω]	> 4000
U _n [VDC]	2.5 < U < 30

20130499-A

WARNING

The pump must be switched off when it is not completely filled up.

ATTENTION

Vent the pump and suction line. Fill the pump and suction line with the medium.

ATTENTION

Seen from the top of the motor the pump should rotate clockwise. See 7.1.1 Indicators 17 (B). In case of a 3-phase motor the rotating direction can be changed by exchanging two of the three phases.

7.4.1 In an open or closed circuit with sufficient supply pressure

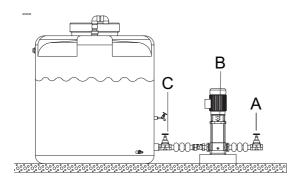


Figure 18: Example: Pump with open or closed circuit

- Close the suction shut-off valve (C) and the outlet shut-off valve (A).
- 2. Open the fill plug (B).
- 3. Gradually open the suction shut-off valve until the liquid flows from the fill plug (B).
- 4. Close the fill plug.
- 5. Fully open the suction shut-off valve.
- 6. Check the rotational direction of the pump.
- 7. Fully open the outlet shut-off valve (A).

7.4.2 In an open circuit with a liquid level lower than the pump

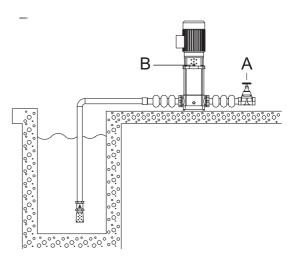


Figure 19: Example: Liquid level lower then pump

1241

- 1. Remove the fill plug (B) from the top bracket.
- 2. Close the outlet shut-off valve (A).
- 3. Fill the pump housing to the maximum through the fill plug with the liquid that is to be pumped.
- 4. Insert the fill plug (B) in the top bracket.
- 5. Check the rotational direction of the pump.
- 6. Open the outlet shut-off valve (A).

7.4.3 After an extended period of nonoperation or storage

During first start-up, check the mechanical seals for leakage due to seizure or dehydration of the lubricating film. If so, please proceed as following:

- 1. Turn shaft manually;
- 2. Check if the mechanical seal is still leaking.

If the mechanical seal is still leaking:

- 1. Disassemble the mechanical seal.
- 2. Thoroughly clean and degrease the running
- Assemble the mechanical seal again and retry start-up.

If this doesn't solve the shaft leakage, replacement of the mechanical seal is necessary.

8 Operation

8.1 Operation

The pump is controlled externally and therefore does not need any operation guidance.

9 Maintenance

9.1 Introduction

WARNING

Observe the general safety precautions for installation, maintenance and repair.

Regular maintenance is necessary for the correct operation of a pump. Please contact your supplier for maintenance of the pump.

9.2 Lubrication

Standard motors, with a maximum power of 7.5 kW, are provided with maintenance free sealed bearings.

Motors with lubricating nipples must be lubricated after 2000 hours. If the pump works under extreme conditions, such as high vibrations and temperatures, the motors must be lubricated more often.

Use a lithium based -30 $^{\circ}$ C / 160 $^{\circ}$ C bearing lubricant (about 15 grams).

When the pump is delivered without a motor and fitted with an other brand or the standard motor is replaced by an other brand than Kolmeks, please consult the maintenance instructions of the motor supplier.

ATTENTION

Also follow the instructions in § 7.2 Mounting a motor on the pump.

9.3 Maintaining the pump for an extended period of non-operation

Turn the shaft every three months¹. This protects the seals from seizure.

Protect the pump if there is a risk of frost. Proceed as follows:

 period may vary per application or medium. Please consult your sales representative for application details.

- 1. Close all pump valves.
- 2. Drain each pump and/or the system.
- 3. Remove all plugs from the pump.
- 4. Open the shut-off and fill/air vent plug, if present.

9.4 Torques of coupling shell - pos 914.01

Table 18: Torques

Material	Dimensions	Torques [Nm]
Steel	M6	16
Steel / Cast iron	M8	30
Aluminium	M8	22
Cast iron	M10	70
95000697-AM		

10 Failures

10.1 Failure table

WARNING
Observe the general safety precautions before installation, maintenance and repair.

Problem	Possible cause	Possible solution	Checkpoints
Leakage along the shaft.	Running surfaces of the mechanical seal worn or damaged.	Replace the mechanical seal.	Check the pump for dirt / abrasive parts.
	New pump: seal stuck due to assembly.	Open and close the outlet shut-off valve quickly dur-	
		ing operation.	
	Mechanical seal mounted incorrectly.	Install the mechanical seal correctly. Use water and	
		soap as a lubricant.	
	Elastomers affected by	Use the right rubber com-	
	medium.	pound for the mechanical seal.	
	Pressure too high.	Use the right type of mechanical seal.	
	Shaft worn.	Replace shaft and mechanical seal.	
	Pump has been operating without water.	Replace the mechanical seal.	
Leakage along the shroud	O-ring worn	Replace the O-ring.	
at the top bracket or at the pump casing.	O-ring not resistant to the medium to be pumped	Replace O-ring by an O-ring with better resistance	
	Too much stress on the pump casing; it becomes oval.	Decrease stress on piping. Mount the pump casing without stress. Support the connections.	
Pump is vibrating or noisy.	Coupling mounted incor- rectly.	Install the coupling in parallel.	
	Faulty setting of the hydraulic assembly.	Adjust the assembly according to the manual.	
	There is no water in the pump.	Fill and vent the pump.	
	No supply of medium.	Make sure there is sufficient supply. Check for blockages in the supply	
		line.	
	Bearings of pump and/or motor worn.	Have the bearings replaced by a certified company.	
	Available NPSH too low (cavitation).	Improve suction condition.	

Problem	Possible cause	Possible solution	Checkpoints
Pump is vibrating or noisy.	Pump does not work in its	Select another pump or	
	working range.	adjust the system to work	
		within its working range.	
	Pump is standing on an	Level the surface.	
	uneven surface.		
Malfunction.	Internal blockage in the	Have the pump inspected	
	pump.	by a certified company.	
Pump does not start.	No voltage on the power	Check the power supply.	Circuit
	terminal.		Main switch
			• Fuses
		Check the motor safety	Earth leakage switch
		relay	Protective relay
	Thermal motor safety	Reset the thermal motor-	Check if the correct value
	switch triggered.	safety. Contact the sup-	is set. Find the correct
		plier, if this problem occurs	value (I _{nom}) on the motor
		more often.	type plate.
The motor is running, but	The coupling between	Tighten the connecting	
the pump does not work.	pump- and motor shaft is	screws to the required	
	loose (when applicable).	torque.	
	The pump shaft is broken.	Contact the supplier.	
Pump supplies insufficient	Outlet and/or inlet shut-off	Open both shut-off valves.	
capacity and/or pressure.	valve is closed.		
	There is air in the pump.	Vent the pump.	
	The suction pressure is	Increase the suction pres-	
	insufficient.	sure.	
	Pump rotates in the wrong	Change over L1 and L2 of	
	direction.	the three phase supply.	
	The suction line has not	Vent the suction line.	
	been vented.		
	Air bubble in the suction	Install the suction line with	
	line.	pump end higher than the	
		other end.	
	Pump sucks air because	Repair the leakage.	
	of leakage in the suction		
	line.		
	Water flow too low. So air	Make sure the flow	
	bubbles clog up in the	increases or use a smaller	
	pump.	pump.	
	The diameter of the suc-	Increase the diameter of	
	tion line is too small.	the suction line.	
	Capacity of water meter in	Increase the capacity of	
	the supply line is too	the water meter.	
	small.	Clean the feet value	
	Foot valve blocked.	Clean the foot valve.	
	The impeller, the diffuser	Clean the inside of the	
	or stage is blocked.	pump.	
	O-ring between impeller and diffuser is gone.	Replace the O-rings.	
	O-ring not resistant to the	Poplace O ring by an O	
	medium to be pumped.	Replace O-ring by an O-ring with better resistance.	
	medium to be pumped.	ming with better resistance.	

11 Annexes

11.1 EC declaration of conformity

Kolmeks Oy Taimistotie 2 FI-14200 Turenki, Finland Tel: +358 20 7521 31

Hereby declares as manufacturer entirely on his own responsibility, that the products:

Vertical multi-stage centrifugal pumps, series: MVV and MVLHS

11. 1 K

In case the pump is delivered without ATEX classification:

to which this declaration refers, is in accordance with the following standard: EN 809: 1998+A1:2009/AC:2010 according to the provisions of the harmonized standard for pumps and which implies the regulations of Machine directive 2006/42/EC, EMC directive 2004/108/EC, Ecodesign Directive 2009/125/EC, RoHS-direktive 2011/65/EU and 2015/863/EU, Regulation 547/2012 (for water pumps with a maximum shaft power of 150kW. Applies only to water pumps marked with the Minimum Efficiency Index MEI. See pump nameplate.) in the most recent form

The pump is subject to this declaration of conformity as a stand alone product. Make sure the appliance or installation in which the pump is built in, has got a declaration of compliance with the directives listed above, for its complete assembly.

Turenki 12-3-2019

Authorized representative Jyrki Vesaluoma Chairman of the board

Kolmeks Oy

Kolmeks Oy P.O. Box 27 FI-142001 Turenki Finland

t +358 20 7521 31

sales.finland@kolmeks.com www.kolmeks.com

30.6.2021

BE00000468-F / EN

Can be changed without prior notice Original instructions